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Abstract 

The rapid growth of China’s energy consumption has resulted in many 

problems in this country. Chinese government has realized the necessity to 

improve energy efficiency and reduce energy consumption. This study 

presents a model that integrates the support vector regression (SVR) and 

cellular automata (CA) to simulate the urban forms and to estimate the cor-

responding energy consumptions in one of the most developed regions in 

China, the Pearl River Delta (PRD). We simulated four scenarios to assess 

the impacts of different development strategies on urban forms and the re-

lated energy consumptions. The result indicates that land demand is more 

sensitive to the change of economic structure rather than energy consump-

tion. The comparison of different simulated scenarios suggests that pro-

moting low energy consuming industries is the most effective strategy to 

balance the economic development and energy and land consumptions. 

Keywords: urban forms; energy consumption; cellular automata; support 

vector regression 
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1. Introduction 

Just about ten years ago, China’s energy consumption was a half of the 

United States’. It took only a few years for China to catch up and became 

the world’s largest energy user (Zellner et al. 2008). The rapid growth of 

energy consumption led to many environmental and social problems (Fang 

et al. 2009). In addition, the insufficient domestic energy supply has forced 

China to rely on fuel imports, which has raised the concerns about energy 

security (Crompton and Wu 2005). 

Since over 70% of China’s total energy is used for industrial production 

(Energy Information Association 2009), China’s “12th Five-Year Plan” 

urges the country to improve the energy efficiency and reduce energy con-

sumption by adjusting economic structure. Under this context, we selected 

one of the most developed regions in China, the Pearl River Delta (PRD), 

as the study area to explore the potential effects of the change of economic 

structure on urban growth and energy consumption. As an emerging mega-

lopolis, the PRD is a major economic region and manufacturing base of the 

world. The early development in this region was mainly grounded on for-

eign investments and the low labor and land costs. The processing tech-

nologies of manufacturing industries, featured by low energy efficiency, 

were dominant in the region (Fang et al. 2009) and has brought about 

many environmental problems (Shao et al. 2006). The provincial govern-

ment has been considering to implement long-term measures to reduce en-

ergy consumption and improve the environment, including adjusting the 

economic structure and upgrading the processing technologies and equip-

ment (Fang et al. 2009). 

In addition, the control of urban form should also be considered as the 

means to reduce energy consumption. The built-environment can affect 

households’ traveling behaviors which are related to energy consumption. 

In North America, residents prefer public transit or walking in those high 

density employment centers, as these areas usually have concentrated 

transit hubs (Chen et al. 2008). Residents were also less likely to own ve-

hicles and tended to used transit more in high density residential neighbor-

hoods due to the traffic congestion and limited parking (Badoe and Miller 

2000; Ewing and Cervero 2001; National Academy of Sciences of United 

States 2009). In China, the land and housing reform has broken the work-

place-residence tie in the pre-reform urbanized areas since the 1980s. This 

resulted in increasing spatial separation between workplace and residence. 

Highways were then intensively constructed by local governments to im-

prove the accessibility; and the automobile use was also encouraged (Yang 
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and Gakenheimer 2007). Such rapid motorization, along with the length-

ened trips, generated serious traffic problems in Chinese cities.  

In this study, we propose a model that integrates support vector regres-

sion (SVR) and cellular automata (CA) to simulate the urban forms and to 

estimate the corresponding energy consumptions. The simulation should 

be useful for exploring the impacts of different development strategies on 

urban growth and the energy consumption. Previous studies demonstrated 

the strength of CA in simulating realistic urban growth (Clarke and 

Gaydos 1998; Silva and Clarke 2005), and in solving urban planning prob-

lems when being coupled with spatial optimization models (Li et al. 

2011a; Li et al. 2011b).  

In addition, we adopted the support vector regression (SVR) (Smola and 

Schölkopf 2004) to predict the corresponding energy consumption for dif-

ferent urban forms. SVR is a new technique of classification and predic-

tion, and has been used to handle complex relationships in many fields 

(Hua et al. 2007; Oliveira 2006). The method employs the structural risk 

minimization (SRM) principle to minimize the upper bound of the general-

ization error instead of the error from the training set. Compared with con-

ventional methods, SVR improves prediction accuracy through avoiding 

overfitting.  

2. Method 

Figure 1 illustrates the flow of the proposed model. In this model, the CA 

was used to simulate urban forms with the urban size constraint, which 

was produced by a SVR model based on a set of socio-economic variables. 

After the simulation, the landscape metrics were then calculated to quanti-

fy the simulated urban forms. Another SVR model was finally applied to 

the prediction of energy consumption using both landscape metrics and 

other socio-economic variables. Details of SVR and CA are provided in 

the following sections. 
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Fig. 1. An integrated model to evaluate the impacts of different development strat-

egies on urban growth and energy consumption.  

2.1. Support vector regression 

In SVR, the objective is to find a function bxwxf +>=< ,)(
 that best 

fits the training dataset, where w is the weight vector, b is the threshold (

Rbw ∈∈ ,χ ), and <* , *> is the dot product. An ε-insensitive loss func-

tion is further defined, where ε is the parameter representing the band of 

the tube around the regression function, as shown in Figure 2. Errors less 

than ε (inside the tube) are ignored, whereas errors larger than ε are depict-

ed using slack variables ξ and ξ
* 

(Figure 2). Then, the optimization objec-

tive can be formulated as (Smola and Schölkopf 2004): 

 

Fig. 2. The ε-insensitive loss function in SVR.  
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where C is a positive constant, representing the tradeoff between the flat-

ness of f and the errors. The minimization of equation (1) is based on the 

Lagrange function: 
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where iα , 
*
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are Lagrange multipliers. The partial deriva-

tives of L, with respect to w, b, ξi, and ξi
*
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Substituting the above equations into equation (3), the minimization prob-

lem becomes: 
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Based on equation (4), the f(x) can be re-formulated as: 
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The threshold b is calculated using the Karush-Kuhn-Tucker (KKT) condi-

tions: 

0],[ =+><+−+ bxwy iiii ξεα     (11) 

0],[
** =−><−++ bxwy iiii ξεα     (12) 
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Therefore, the threshold b is obtained as: 
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where xi represents the data points inside the tube, whose errors are less 

than ε. According to the definition of ε-insensitive loss function, the La-

grange coefficients of those data points inside the tube are zero. Those data 

points with non-zero coefficients are called support vectors. Furthermore, 

the optimization process described above can be alternatively accom-

plished through the kernel function ),( ji xxK : 

∑
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The forms of kernel functions include polynomial, sigmoidal, and radi-

al-basis functions. Details of the solution can be found in (Smola and 

Schölkopf 2004). In this study, the SVR is implemented through the ma-

chine learning software WEKA (Frank et al. 2010). The performance of 

SVR is assessed in terms of prediction accuracy. This can be measured by 

using the mean relative error (MRE), a common measurement in many ap-

plications of SVR (Oliveira 2006): 
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where Yi and Y´i are the ith observation and its estimate, respectively. 

2.2. Logistic-CA  

The CA model was developed largely based on Wu’s (2002) method, but 

was enhanced by incorporating the urban size projected by the SVR based 

on a set of economic variables. The CA model was formulated in a logistic 

form. Specifically, in a two dimensional latticed space of this CA model, 

the probability of cellij to be developed was estimated through a function 

of development factors (x1, x2…xn), such as the proximity to town centers 
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or major roads. A logistic function is used to represent the development 

probability: 
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where z is the combination score of development factors of cellij: 
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where b0 is a constant, bk are the coefficients of the development factors, 

which can be calibrated using logistic regression; xk is the development 

factors of cellij. 

However, the probability ijgp ,  only addresses the influences of static 

physical factors. The actual urban development would be also subject to 

the influences of dynamic factors. In the CA model, they are represented in 

a way of neighborhood effect, denoted as 
t

ijΩ . A simple way to obtain 

t

ijΩ  is to calculate the development density in an n×n neighborhood of 

cellij at time t: 
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where con() is a conditional function that returns true if the state of a cell 

within the neighborhood is currently developed. Physical constraints can 

be incorporated into the function. For instance, if a cell belongs to water 

body, mountain, or restricted areas, the cell should be excluded from de-

velopment. Therefore, the development probability is revised as follows: 
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where con() is a conditional function that returns true if cellij is suitable for 

development. A non-linear transformation is imposed to 
t

ijcp ,  
to promote 

the probability of development in cells with higher evaluation scores: 

)]/1(exp[ max,,,,

t

c

t

ijc

t

ijc

t

ijt pppp −−= δ     (23) 

where 
t

cp max,  is the maximum value of 
t

ijcp ,  in space at time t; and δ  is 

called dispersion parameter, ranging from 1 to 10. During the simulation 

process, the number of cells selected for development should meet the pro-

jected amount of urban growth. Therefore, 
t

ijtp ,  is further scaled as: 

∑ ′′= t
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t

ijt

t
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where q is the expected number of cells to be converted, which can be de-

termined through the iteration number and the projected urban size. The 

SVR model was used to estimate the urban size based on a set of economic 

variables. 

The selection of cells for development is based on the Monte Carlo ap-

proach. First, the development probability for each cell in space is updated 

according to equations (22), (23), and (24). Then, a cell is randomly picked 

and its scaled development probability
t

ijsp ,  is compared with a random 

value γ , within 0 to 1. If 
t

ijsp ,  is greater thanγ , the cell is converted to 

urban land use. Otherwise, it remains unchanged. 

3. Implementation and results 

3.1. Study area 

The study area is located in the Pearl River Delta (PRD), Guangdong Prov-

ince, China (Figure 3). The five most economically important cities of this 

region, namely Guangzhou, Shenzhen, Foshan, Dongguan, and 

Zhongshan, were selected for this study. In 1978, the economic reform of 

China triggered the boom of the regional economy, as well as the rapid ur-

banization process. At present, the PRD has the highest per capita GDP 

among the several most developed regions in China (Shao et al. 2006). 

However, it requires a vast volume of natural resources, especially fuel re-

sources, to sustain its economic growth. According to the Guangdong Sta-

tistical Yearbook (http://www.gdstats.gov.cn/tjnj/ml_c.htm), the energy 

consumption of the entire province reached 226.72 million tons of the 

Standard Coal Equivalent (SCE) in 2008.  
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Fig. 3. Location of the Pearl River Delta.  

3.2. Data 

The primary source of the energy consumption data used in this study is 

the Statistical Yearbooks published by the city governments. Most of these 

data are not available before 2005. As a result, we only collected the ener-

gy consumption data of the study area from 2005 to 2008. The total 

amounts of energy consumption of Guangzhou, Dongguan, and Zhongshan 

were found in the Statistical Yearbooks, but those of Foshan and Shenzhen 

were not available. The energy consumptions of these two cities were es-

timated using the following equation: 

000,1/,, iiLivingiiGDP PeVeE +=     (25) 

where eGDP,i is the energy intensity (ton of SCE/104 Yuan) of city i, and Vi 

represents the amount of GDP (104 yuan) of city i; eLiving,i is per capita en-

ergy consumption for living (kg of SCE) of city i, and Pi is the city’s popu-

lation. Table 1A shows the energy intensity (energy consumption per unit 

GDP) for all the five cities from 2005 to 2008, which were retrieved from 

Statistical Yearbooks of these cities. To validate equation (25), we used it 

to estimate the energy consumption of Dongguan, Guangzhou, and 

Zhongshan, and compared the results with the values recorded in the Sta-

tistical Yearbooks of these three cities (Table 1B). For the three cities, the 

differences between the estimates and recorded values are insignificant, 
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which validates the use of equation (25) to estimate the energy consump-

tions of Foshan and Shenzhen. 

Table 1. Energy consumption per unit GDP and total energy consumption of the 

five selected cities during 2005 to 2008. The estimated total energy consumption 

is shown in the parentheses. 

 

Table 2. Percentage of gross products of industry and energy consumption for the 

five selected cities in 2008. 

-  - Percentage of gross 

products of industry (%) 

- Percentage of energy con-

sumption for industrial production 

(%) 

- Dongguan - 46.3 - 56.1 

- Foshan - 60.8 - 53.3 

- Guangzhou - 34.1 - 54.7 

- Shenzhen - 43.8 - 55.2 

- Zhongshan - 54.9 - 42.0 

Sources: Guangdong Statistical Yearbook and the respective statistical yearbooks 

of Dongguan, Foshan, Guangzhou, Shenzhen, and Zhongshan. 

While industrial production was generally the largest source of energy 

consumption in the five cities, the subsectors of industry can be quite dif-

ferent in terms using energy. To classify the subsectors based on their en-

ergy consumptions, we calculated the energy intensity for each of the 39 

subsectors identified in China’s statistical system for the five cities. Due to 

the data limitation, we had to assume that the energy intensity of a certain 

sub-sector is the same for all five cities, and use the provincial data to con-

duct the calculation. Based on the energy intensity values, we classify the 

subsectors into three groups: intensive energy consuming sector (avg. 2.35 

t. of SCE/104 Yuan, including industries such as smelting and pressing of 
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ferrous metals, nonmetal mineral products, petroleum refining, coking, nu-

clear fuel processing, papermaking and paper products, etc), medium ener-

gy consuming sector (avg. 0.68t. of SCE/10
4
 Yuan, including industries 

such as manufacture of chemical fibers, manufacture of medicines, print-

ing and record medium peproduction, manufacture of textile garments, 

footwear and headgear, etc), and low energy consuming sector (avg. 0.32t. 

of SCE/104 Yuan, including industries such as manufacture of gen-

eral/special-purpose machinery, manufacture of communication equip-

ment, computers and other electronic equipment, recycling and disposal of 

waste, etc). Table 3 lists the proportions of the industrial products of these 

subsectors in year 2008 for each city.  

Table 3. The fraction of gross products of each industrial sector in terms of energy 

intensity in 2008 (%). 

-  Intensive energy con-

sumption industries 

Medium energy con-

sumption industries 

Low energy con-

sumption industries 

Dongguan 23.98 29.73 46.28 

Foshan 37.76 26.52 35.72 

Guangzhou 15.28 41.17 43.55 

Shenzhen 9.10 16.98 73.92 

Zhongshan 15.50 40.31 44.20 

Table 4. All statistical data used in this study. 

Data Period 

Total energy consumption at city level 2005-2008 

Population of each city 2000-2008 

Gross domestic products of each city 2000-2008 

Gross products of industry at city level 2000-2008 

Gross products of each industrial sector at both provincial 

and city level 

2005-2008 

Energy consumption of each industrial sector at provincial 

level 

2005-2008 

Gross products of tertiary industry at city level 2000-2008 

Sources: Guangdong Statistical Yearbook and the respective statistical yearbooks 

of Dongguan, Foshan, Guangzhou, Shenzhen, and Zhongshan. 

In this study, we used multi-temporal satellite images to generate urban 

land use data. These satellite data include four pairs of Landsat TM5 imag-

es (path 122, row 44; path 121, row 44) acquired in 2005, 2006, 2007, and 

2008, with a resolution of 30 m. The land use classification for these imag-

es was carried out using the object-oriented classification software, Defini-

ens Developer 7.0 (Definiens Developer 7.0 2003). The land use classes of 
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farmland, fishpond, and bare soil were merged into non-urban area, re-

garded as candidates of land conversion during the urban growth simula-

tion; whereas the forests and water areas were considered as restricted are-

as in which development was not permitted. 

We used the method proposed by Pontius and Millones (2011) to assess 

the classification accuracy. This method divides the disagreements be-

tween classification and reference into quantity disagreement and alloca-

tion disagreement. The quantity disagreement and allocation disagreement 

can be calculated using the following equations (Pontius and Millones 

2011): 
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AQD +=   (29) 

where J is the number of land use classes; nij is the number of sample clas-

sified as i and referenced as j; Ni is the population of land use class i; pij is 

the estimated proportion of the study area classified as i and referenced as 

j; qg and ag are the quantity disagreement and the allocation disagreement 

of land use class g; Q and A are the overall quantity disagreement and the 

allocation disagreement, respectively; D is the total disagreement. 

We calculated the quantity and allocation disagreements for the binary 

land use data (urban and non-urban) from 2005 to 2008. Table 5 shows the 

confusion matrices for each year’s binary land use data, and Figure 4 

demonstrates the quantity and allocation disagreements. The majority of 

disagreement comes from allocation disagreement, ranging from 5% to 

8%, whereas the quantity disagreement is only 1% to 3%. The total disa-

greements are less than 10% for all four years. 
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Table 5. Confusion matrices of the classification of urban areas (2005 to 2008) 

 

In addition, we used classification consistency to assess the over-time 

classification accuracy. This was carried out according to a three-step pro-

cedure: (1) detecting the consecutive land use change from 2005 to 2008 

using the binary land use data (i.e., 2005 → 2006 → 2007 → 2008). As a 

result, there should be 16 possible changes; (2) identifying the cells that 

witnessed invalid (false) changes. Not all of these 16 possible changes are 

valid in reality. For example, the conversion from urban to non-urban is 

almost impossible; (3) calculating the respective proportions of cells with 

valid and invalid changes, denoted as pv and piv, respectively. The value of 

pv is calculated by overlaying four years’ binary land use data and counting 

cells with valid changes (Figure 4B). As a result, we found 11,948,717 

cells with valid changes and 970,139 cells with invalid changes. Thus, the 

value of pv  is 0.9249. If persistent non-urban cells are excluded from the 

calculation, the value of pv  becomes 0.7937.  

After the land use classification, landscape metrics were used to quanti-

fy the urban land use patterns. We selected four landscape metrics based 

on previous literature (Dietzel et al. 2005; Seto and Fragkias 2005), includ-

ing total urban class area (UCA), the number of urban patches (NP), mean 

perimeter-area ratio (PARA), and mean Euclidean nearest neighbor dis-

tance (ENN). For NP, a patch means an individual homogenous region of 

urban land use (Herold et al. 2005). ENN is the average distance between a 

patch and its nearest neighbor. PARA is the mean value of the perimeter-

area ratio of all urban patches. 

As the inputs to the CA model, a series of spatial variables were gener-

ated using GIS functions. The Atlas of Guangdong Province 2009 was 

used to obtain the distribution of city centers and town centers, and trans-

portation networks of the study area. These layers were further used to cre-

ate spatial variables, such as the distance to city centers, the distance to 

towns, the distance to major expressways, the distance to major roads, and 

the distance to railways. The slope of the study area was produced using 

the digital elevation model (DEM). All the spatial data have a resolution of 

30 m. 
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Fig. 4. The classification accuracy of theland use data. (A) Quantity and allocation 

disagreements. (B) Consistency of the land use classification over time.  
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3.3. Implementing SVR models to predict energy consumption 
and urban size 

The energy consumptions of the five selected cities were predicted based 

on SVR using two types of factors. The first type is the economic varia-

bles, including tertiary industrial output value (Vtert) and the gross products 

of three industrial sectors: intensive energy consuming sector (M1), medi-

um energy consuming sector (M2), and low energy consuming sector (M3). 

The second type includes those factors that reflect the characteristics of ur-

ban forms, represented by landscape metrics (UCA, NP, ENN, and 

PARA).  

The training of SVR was implemented in WEKA, a machine learning 

software (Frank et al. 2010). Data were normalized and randomly split into 

two halves for training and testing, respectively. Table 6 shows the statisti-

cal description of these two data sets. The polynomial function and the ra-

dial-basis function were used to make a comparison in terms of mean rela-

tive error. The results are shown in Table 7A. It can be seen that the 

polynomial function (exponent = 1) has the highest modeling accuracy, 

with the mean relative errors of 8.93% for training and 12.63% for, respec-

tively. 

Table 6. Statistical description of the training and testing data sets (mean and 

standard deviation). 

-  Training (10 instances) Testing (10 instances) 

E (10
6
 t. of SCE) 27.26 (17.92) 28.39 (8.19) 

M1 (10
8
 yuan) 279.16 (139.57) 393.27 (140.88) 

M2 (10
8
 yuan) 544.84 (322.91) 602.31 (264.51) 

M3 (108 yuan) 1,335.72 (1031.49) 754.59 (199.05) 

Vtert (10
8
 yuan) 2,307.68 (1779.15) 1,604.45 (906.41) 

P (10
4
 persons) 643.02 (345.02) 699.93 (145.61) 

UCA (km
2
) 526.89 (252.08) 779.45 (91.51) 

NP 220 (79.56) 277.70 (53.49) 

ENN (m) 270.56 (93.95) 289.48 (127.95) 

PARA 399.925 (99.54) 325.73 (52.48) 

Note: Standard deviations of variables are shown in the parentheses. 

Another SVR model was employed to project urban size. We take into 

account three categories of socio-economic variables to predict urban size: 

population (P), gross products of three industrial sectors (M1, M2, and M3), 

and the tertiary sector (Vtert). Configuration of this SVR model remains the 

same as the previous one. The performances of the polynomial and radial-

basis functions were compared and the results are shown in Table 7B. The 
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respective mean relative errors of the polynomial function (exponent = 1) 

for training and testing are 12.87% and 16.02%, which are the lowest 

compared with the other two models. This model was used to estimate ur-

ban size during the simulation of PRD’s urban growth from 2005 to 2008 

and to project urban size in the scenario simulations. 

Table 7. The errors of the SVR-based models for predicting energy consumption 

and urban size. 

 Training          Testing 

(A) SVR-based energy consumption model (10
6
 t. of 

SCE) 

Polynomial function (exponent=1) 8.93%           12.63% 

Polynomial function (exponent=2) 11.90%           15.42% 

Radial-basis function 33.70%           53.13% 

(B) SVR-based urban size model (km
2
) 

Polynomial function (exponent=1) 12.87%           16.02 

% 

Polynomial function (exponent=2) 22.75%           35.44% 

Radial-basis function  69.52% - 8.71% 

3.4. Calibration of Logistic-CA for urban growth simulation 

The Logistic-CA was calibrated using land use data in the years of 2005 

and 2008. The input variables include distance to city centers (x1), distance 

to towns (x2), distance to expressway (x3), distance to major roads (x4), dis-

tance to railways (x5), and slope (x6). The calibrated parameters are shown 

in Table 8. 

Table 8. The calibration results of the Logistic-CA. 

 Dongguan Foshan Guangzhou Shezhen Zhongshan 

b1 -0.877 -3.853 -2.234 0.615 -0.662 

b2 -1.417 -3.01 -4.645 -3.591 -3.520 

b3 -0.001 -0.825 -3.660 -0.228 -0.211 

b4 -1.518 -2.923 -6.686 -2.755 -1.872 

b5 -0.469 0.509 -3.284 1.037 -0.966 

b6 -14.243 -5.725 -11.899 -12.873 -2.862 

b0 1.196 1.960 3.204 0.960 2.011 

δ  2.0 7.0 3.0 3.0 1.0 
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Fig. 5. (A) and (B) the actual and simulated urban land use patterns, respectively; 

(C) overlap of the actual and simulated land use; (D) quantity of the three grouped 

cells.  

Figures 5A and B are the observed and simulated urban land use pat-

terns in 2008. The modeling outcome was validated at both local (pixel-

by-pixel) and global (landscape metrics) axes. Pontius et al. (2007) pro-

posed a pixel-by-pixel approach called “figure of merit” to assess the accu-

racy of a simulation model. “Figure of merit” is a ratio, where the numera-

tor is the number of instances that changed and correctly predicted as 

changed, while the denominator is the total number of instances excluding 

persistently non-changing instances. Based on this ratio, Pontius et al. 

(2008) conducted a comparison of 13 land change modeling applications, 

in which they found that the value of “figure of merit” ranges from 0.01 to 

0.59. 
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We first overlaid the observed land use pattern with the simulated one to 

identify four groups of cells: (1) observed as changed and predicted as 

changed; (2) observed as non-changed and predicted as changed; (3) ob-

served as changed and predicted as non-changed; and (4) persistent non-

changed. Figure 5C shows the distribution of these groups of cells. Then 

we counted the respective number of cells for each group (Figure 5D) and 

calculated the “figure of merit.” The value of “figure of merit” is 0.3430. 

This value is average compared with that of other land use models (Pontius 

et al. 2008). 

The simulated land use patterns were also validated at landscape level. 

This was carried out by comparing the values of landscape metrics (NP, 

PARA, and ENN) between the observed and simulated patterns. A similar-

ity index was used to measure the overall accuracy: 

∑
=

−
−=

n

i oi

oisi

a

aa

n
A

1 ,

,,1
1   (30) 

where n is the number of metrics; ai, s and ai, o are values of metrics derived 

from the simulated pattern and the observed pattern, respectively. 

Table 9. Validating the simulated patterns using landscape metrics. 

 NP PARA ENN 

(A) Actual land use patterns 

Dongguan 184 395.5731 196.5591 

Foshan 329 267.5776 204.7529 

Guangzhou 369 328.8492 435.4597 

Shenzhen 181 425.139 210.2299 

Zhongshan 141 303.7895 218.9249 

(B) Simulated land use patterns 

Dongguan 140 458.6587 252.2834 

Foshan 243 327.4381 281.5401 

Guangzhou 206 473.4667 418.7878 

Shenzhen 152 557.8764 276.1894 

Zhongshan 109 380.0164 274.4164 

(C) Overall similarity (A)    

Dongguan 77.26%   

Foshan 71.33% -   

Guangzhou 69.34% -   

Shenzhen 73.79% -   

Zhongshan 75.62% -   

 

Tables 9A and B list the values of landscape metrics for the observed 

and simulated patterns. Table 9C shows the results of the similarity index 

A. The values of A are highest in the simulations of Dongguan and 
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Zhongshan while the lowest in the simulation of Guangzhou. The reason is 

that Guangzhou has a much larger territory than the other four cities. Nev-

ertheless, the average value of the A is over 70% for all five cities. This in-

dicates that the model is accurate enough for further applications. 

3.5. Evaluating the impacts under different development 
strategies 

To explore the potential impacts of the proposed development strategy on 

urban growth and energy consumption, four scenarios of the development 

in 2011 were created based on the development plans mentioned above. 

Scenario 1 assumes that the region will continue the current development 

strategy in the future. In Scenario 2, the region will prefer to develop in-

dustries in the intensive energy consuming sector, whereas in Scenario 3 

the region will focus on the development of low energy consuming indus-

tries. In Scenario 4, higher priority is given to the development of tertiary 

industry instead of manufacturing industries. 

The quadratic model was used to extrapolate the socio-economic varia-

bles (population and the gross products of both industrial and tertiary sec-

tors) before the scenario simulations: 

cbtaty ++= 2
  (31) 

where y is the predicted socio-economic variable, and t is the time variable 

(year). Estimation of coefficients a, b, and c was based on statistical data 

from 2000 to 2008, which are listed in Table 4. Other details of the four 

scenarios are specified below: 

Scenario 1: Baseline scenario. In this scenario, the development strate-

gies for the five cities remain unchanged. The values of Vtert, M1, M2, and 

M3 for each city were forecasted using equation (31). Urban size was then 

projected and the urban land use patterns were simulated by the calibrated 

CA model. The simulated patterns were quantified using the metrics NP, 

ENN, and PARA. Energy consumption was then predicted based on the 

SVR model. 

Scenario 2: Preferring industries in the intensive energy consuming sec-

tor. Among the five cities, Foshan has the highest proportion of industries 

in the intensive energy consuming sector (37.76%, see Table 3). Such situ-

ation will continue if the development plan of Foshan is followed. In this 

scenario, the development strategy of Foshan was applied to the simulation 

of the other four cities, using Foshan’s CA model parameters. Specifically, 

the values of Vtert, M1, M2, and M3 for Foshan in 2011 were forecasted us-

ing equation (31), and the respective proportions of M1, M2, and M3 can be 

derived, denoted as pm1, FS, pm2, FS, and pm3, FS. For the other four cities, the 
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values of Vtert, M1, M2, and M3 in 2011 were extrapolated, and the generat-

ed M1, M2, and M3 were re-scaled based on pm1, FS, pm2, FS, and pm3, FS. The 

urban land use patterns were then simulated based on the calibrated CA 

model, constrained by the projected urban size. The simulated patterns 

were quantified using the metrics NP, ENN, and PARA. Finally, the ener-

gy consumption of each city was predicted using the SVR-based energy 

prediction model. 

Scenario 3: Preferring industries in the low energy consuming sector. In 

contrast with Scenario 2, Scenario 3 assumes that the majority of industrial 

outputs exclusively came from the low energy consuming sector in 2011. 

Recently, Shenzhen had approximately 74% of industrial outputs from in-

dustries in the low energy consuming sector (Table 3). The development 

plan of Shenzhen emphasizes the development of such industries in the fu-

ture. In this scenario, the values of Vtert, M1, M2, and M3 of Shenzhen in 

2011 were first forecasted using equation (31). Then the respective propor-

tions of M1, M2, and M3 can be derived, denoted as pm1, SZ, pm2, SZ, and pm3, 

SZ. For the other four cities, the values of Vtert, M1, M2, and M3 were extrap-

olated, and the generated M1, M2, and M3 were re-scaled based on pm1, SZ, 

pm2, SZ, and pm3, SZ. The rest of the procedure is similar to Scenario 2, except 

that Shenzhen’s CA model parameters were implemented to the entire re-

gion.  

Scenario 4: Preferring industries in the tertiary sector. The study area 

has recently witnessed a rapid growth in the tertiary industry (including in-

formation transmission, computer services and software, wholesale and re-

tail trades, hotels and catering services, financial intermediation, etc). For 

instance, the proportion of tertiary industry was as high as 59.0% in 

Guangzhou in 2008. The development plan of Guangzhou indicates that 

the city will prefer to grow the tertiary industry in its future development. 

Thus, this scenario assumes that Guangzhou’s development strategy will 

be implemented in the other four cities. Specifically, the values of gross 

domestic output Vtert, M1, M2, and M3 of Guangzhou in 2011 were forecast-

ed using equation (31). Meanwhile, the respective proportions of the out-

puts of the industrial sector and tertiary sector were determined, denoted as 

pm, GZ and ptert, GZ. For the other four cities, the values of the gross domestic 

output were predicted beforehand, and the values of Vtert, M1, M2, and M3 

were then disaggregated based on ptert, GZ and pm, GZ. The rest of the proce-

dure is similar to that of Scenario 2, except that each city’s original CA 

model parameters of were replaced by the ones of Guangzhou. 

Figure 6 shows the predicted values of Vtert, M1, M2, and M3 in 2011 for 

each scenario. Table 10A lists the projected urban size of each city for 

these scenarios. The total urban size of the five cities is 4,564.18 km2 in 

the baseline scenario, in which the region follows the current development 
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strategy. The total urban size increases to 5,131.67 km2 if the strategy of 

developing industries in the intensive energy consuming sector is adopted 

(Scenario 2). On the contrary, the total urban size significantly decreases to 

4,080.87 km2 if the region’s major industrial outputs come from the low 

energy consuming sector (Scenario 3). In case the tertiary industry be-

comes the dominant sector of the regional economy (Scenario 4), the total 

urban size (4,285.69 km2) becomes less than that of the baseline scenario 

but much higher than that of Scenario 3. This result is unexpected because 

the total land demand of promoting the tertiary industry should be lower 

than that of promoting industrial production. A possible reason is that the 

recent boom of real estate development requires a large amount of land for 

the construction of residential buildings and various kinds of villas.  

 

 

Fig. 6. Predicted gross production values of Vtert, M1, M2, and M3 (10
8
 yuan) in the 

four scenarios.  

Figure 7 shows the simulated urban land use patterns for these scenari-

os. The simulation can help visualize the potential impacts of different de-

velopment strategies. For example, Scenario 2 (Figure 7B) will cause a 

large quantity of land to be converted into urban land use and, in particu-

lar, the non-urban area is almost depleted in Shenzhen. Scenario 3 (Figure 

7C) is more reasonable because it still shows sufficient space for the city to 

grow in the future. All these patterns are quantified using the metrics NP, 
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ENN, and PARA. The results, along with the predicted values of Vtert, M1, 

M2, and M3 were used to estimate energy consumption for each city.  

Table 10. The predicted urban size and energy consumption in the four develop-

ment scenarios. 

 Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

(A) Projected urban size (km
2
) 

Dongguan 979.26 1058.99 929.17 930.47 

Foshan 1,202.05 1,202.05 897.62 907.83 

Guangzhou 1,211.49 1,461.57 1,139.26 1,211.49 

Shenzhen 774.38 950.25 774.38 876.47 

Zhongshan 397.00 458.82 350.44 359.43 

Total 4,564.18 5,131.67 4,080.87 4,285.69 

(B) Predicted energy consumption 

(10
6
 t. of SCE) 

Dongguan 34.58 38.16 33.07 32.97 

Foshan 49.08 49.08 42.67 42.65 

Guangzhou 71.65 81.92 69.14 71.65 

Shenzhen 53.46 62.02 53.46 54.39 

Zhongshan 13.62 16.16 13.27 13.27 

Total 222.39 247.35 211.60 214.94 

Note: Scenario 1 = Baseline; Scenario 2 = Preferring industries in the intensive 

energy consuming sector; Scenario 3 = Preferring industries in the low energy 

consuming sector; Scenario 4 = Preferring industries in the tertiary sector. 

Table 10B lists the predicted energy consumptions of the five cities in 

2011. In the baseline scenario, the energy consumption is 222.39 million 

tons of SCE (Scenario 1). The highest energy consumption (247.35 million 

tons of SCE) is witnessed in Scenario 2 that assumes the region prefers to 

develop industries in the intensive energy consuming sector, whereas the 

lowest energy consumption (211.60 million tons of SCE) is observed in 

Scenario 3, in which the region strongly promotes industries in the low en-

ergy consuming sector. In addition, compared with the result of the base-

line scenario, a moderate reduction of both land and energy consumptions 

can be seen in Scenario 4 (developing the tertiary industry). 

 



CUPUM 2013 conference papers           23 

 

 

Fig. 7. Simulated urban land use patterns in the four scenarios.   

Further comparison of the results reveals an interesting finding. The rel-

ative differences of projected urban size are larger than those of the pre-

dicted energy consumption among the four scenarios. For instance, the 

comparison between Scenarios 1 and 2 shows that the percentages increase 

of the urban size (12.43%) is slightly higher than that of the energy con-

sumption (11.22%). Such differences are more obvious in the comparison 

between Scenarios 1 and 3; the percentage reduction of urban size is 

10.59%, while the percentage reduction of energy consumption is only 

4.85%. A similar result is observed in the comparison between Scenarios 1 

and 4, in which the respective percentage changes are 6.10% and 3.35%. 

Such results indicate that compared with energy consumption, urban size is 

more sensitive to the adjusted economic structure, perhaps because the 

land requirement varies among industries in each sector. Although we nev-

er know the exact land requirements of each industry, evidence suggests 
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that industries in the high energy consuming sector usually occupy a larger 

amount of land.  

In summary, the scenario simulations above represent four types of de-

velopment strategies. The strategy of developing energy-intensive indus-

tries requires massive inputs of both energy and land. Hence, it is not suit-

able for cities like Shenzhen, whose developable land has already become 

scarce (see Figure 7B). On the contrary, the demands of land and energy 

are much lower if the strategy of developing industries in the low energy 

consuming sector is adopted. Therefore, given the same size of economy, 

increasing the share of industries in the low energy consuming sector is 

more helpful to balance the economic development and energy and land 

consumptions. Promoting the tertiary industry is another alternative for fu-

ture development. Generally, a shift from the primary and secondary in-

dustry to the tertiary industry is happening in industrialized regions. The 

analysis in this study reveals that the strategy of promoting the tertiary in-

dustry can, to some extent, reduce both land and energy consumptions. 

4. Conclusion 

This study presents a model that integrates CA and SVR to evaluate the 

impacts of different development strategies on urban growth and energy 

consumption. The proposed model was tested in the PRD, which is a rap-

idly developing region in China. The Logistic-CA model was used to sim-

ulate the urban forms of the study area, constrained by the projected urban 

size. The landscape metrics were then adopted to quantify the simulated 

urban forms. Finally, the SVR model was employed to predict energy con-

sumption using the landscape metrics and other socio-economic variables. 

Scenario simulations were carried out based on the respective develop-

ment plans of Guangzhou, Foshan, and Shenzhen to examine the effects of 

the modified economic structure on urban growth and energy consump-

tion. Compared with the baseline scenario (Scenario 1), Scenario 2 (the 

development strategy of Foshan is implemented) will largely increase the 

demands of land resources and energy. In contrast, the development strate-

gy of Shenzhen requires far less land and energy resources for future de-

velopment. Promoting the tertiary industry (Guangzhou’s strategy), to 

some extent, can also reduce the demands of both land and energy. 
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